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Preface

The Clouds and the Earth’s Radiant Energy System (CERES) Data Management System supports
the data processing needs of the CERES science research to increase understanding of the Earth’s
climate and radiant environment.  The CERES Data Management Team works with the CERES
Science Team to develop the software necessary to support the science algorithms.  This software,
being developed to operate at the Langley Distributed Active Archive Center (DAAC), produces
an extensive set of science data products.

The Data Management System consists of 12 subsystems; each subsystem represents a stand-alone
executable program.  Each subsystem executes when all of its required input data sets are available
and produces one or more archival science products.

The documentation for each subsystem describes the software design at various stages of the
development process and includes items such as Software Requirements Documents, Data
Products Catalogs, Software Design Documents, Software Test Plans, and User’s Guides.

This version of the Software Design Document records the architectural design of each Subsystem
for Reslease 1 code development and testing of the CERES science algorithms. This is a
PRELIMINARY document, intended for internal distribution only.  Its primary purpose is to
record what was done to accomplish Release 1 development and to be used as a reference for
Release 2 development.
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1.0   Introduction

The Clouds and the Earth’s Radiant Energy System (CERES) is a key component of the Earth
Observing System (EOS).  The CERES instruments are improved models of the Earth Radiation
Budget Experiment (ERBE) scanner instruments, which operated from 1984 through 1990 on the
National Aeronautics and Space Administration’s (NASA) Earth Radiation Budget Satellite
(ERBS) and on the National Oceanic and Atmospheric Administration’s (NOAA) operational
weather satellites NOAA-9 and NOAA-10.  The strategy of flying instruments on Sun-
synchronous, polar orbiting satellites, such as NOAA-9 and NOAA-10, simultaneously with
instruments on satellites that have precessing orbits in lower inclinations, such as ERBS, was
successfully developed in ERBE to reduce time sampling errors.  CERES will continue that
strategy by flying instruments on the polar orbiting EOS platforms simultaneously with an
instrument on the Tropical Rainfall Measuring Mission (TRMM) spacecraft, which has an orbital
inclination of 35 degrees.  In addition, to reduce the uncertainty in data interpretation and to
improve the consistency between the cloud parameters and the radiation fields, CERES will
include cloud imager data and other atmospheric parameters.  The first CERES instrument is
scheduled to be launched on the TRMM spacecraft in 1997.  Additional CERES instruments will
fly on the EOS-AM platforms, the first of which is scheduled for launch in 1998, and on the EOS-
PM platforms, the first of which is scheduled for launch in 2000.

1.1  Document Overview

The CERES "Determine Cloud Properties, TOA and Surface Fluxes" Subsystem (Subsystem 4.0)
has been divided into two separate subsystems.  They are the "Determine Cloud Properties"
Subsystem and the "Determine TOA and Surface Fluxes" Subsystem.  The “Determine Cloud
Properties" Subsystem has been further divided into two major components. Each component
develops and publishes separate design documents, and develops separate sets of executable code.
The first major component (Cloud Retrieval) combines the functions described in Algorithm
Theoretical Basis Document (ATBDs) 4.1, 4.2, and 4.3, and provides the cloud masks and cloud
properties for the cloud imager data on a per-pixel basis.  The second major component is
Convolution of Imager Cloud Properties with CERES Footprint Point Spread Function,
corresponding to ATBD 4.4.  The Determine TOA and Surface Fluxes Subsystem (ATBDs 4.5 and
4.6) completes Subsystem 4.0 and the SSF archival product by producing fluxes at the top-of-the-
atmosphere (TOA) and fluxes at the surface.

This document addresses only the design for the Cloud Retrieval process.  The intended audience
for this document is the CERES Cloud Subsystem Teams, Subsystem testers, neighboring
Subsystem teams, and science reviewers.

The objective of this document is to provide Release 1 architectural design specifications which
were used to guide the development of the Cloud Retrieval component.  The Release 1 design
document addresses the requirements from the Science Team’s ATBDs and the Software
Requirements Document (SRD) 4.1 - 4.3 (Reference 1).  The design document is developed by the
Data Management Cloud Subsystem Team.  This document currently containsSections 1.0 and
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2.0.  Section 3.0 will not be completed for publication until Release 2.Appendix B contains a
listing of the data structues for the output products.Appendix C contains a listing of several
primary internal data structures.  Neither of these Appendices will be completed until Release 2.
The document sections are:

• 1.0: Introduction

1.1: Document Overview

1.2: Subsystem Overview

1.3: Key Concepts

1.4: Implementation Constraints

1.5: Design Approach

• 2.0: Architectural Design

2.1 Input Data Sets: InitCloud Routine

2.2 Chunk: RetrieveChunk Routine

2.3 Algorithm Managers

2.4 OutputDataSets: OutputCloudData Routine

• References

• Appendix A - Abbreviations and Acronyms

• Appendix B - External Interfaces

• Appendix C - Data and Constants

The following sections are not included in this release:

• 3.0: Module Specifications (Detail Design)

• Appendix D - Error Messages

• Appendix E - Design Chart Symbols

1.2  Subsystem Overview

The Cloud Retrieval Subsystem’s objective is to use high spectral and spatial resolution cloud
imager data to determine cloud microphysical and optical properties.  This provides a set of pixel
cloud properties that are mapped onto the CERES footprint in the next process, documented in
Software Design Document (SDD) 4.4.  The major Cloud Retrieval science requirements are
illustrated inFigure 1-1 and include:

1. Prepare a "chunk" of pixels (multiple scan lines of imager data):  attach the imager
radiances and various ancillary data to each imager pixel within the chunk.  Classify each
pixel as clear, cloudy, or uncertain. The pixel classification process uses various tests on
the imager radiometric data and ancillary data to determine a cloud mask (Reference 2).
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2. Determine cloud macrophysical properties (cloud layer and cloud top pressure) for cloudy
pixels (ATBD 4.2) (Reference 3).

3. Determine cloud microphysical and optical properties (base and effective radiating center
temperature and pressure, phase, particle size, optical depth at 0.65 micron, water/ice path,
emittance at 10.8 micron) for cloudy pixels (ATBD 4.3) (Reference 4).

The primary input data sets for the Cloud Retrieval Subsystem are:

1. The Cloud Imager Data (CID) data product contains time code, pixel location, viewing
geometry, and radiance data.  For the TRMM mission, CERES will use the Visible Infrared
Scanner (VIRS) cloud imager data.  For the next launches on EOS AM and PM spacecraft,
CERES will use selected channels from the Moderate Resolution Imaging Spectrometer
(MODIS) imager data.  The Release 1 test data are Advanced Very High Resolution
Radiometer (AVHRR) imager data from the NOAA-9 spacecraft.

2. The SURFace MAP (SURFMAP) data product is a set of maps for elevation, water content,
ERBE Scene ID, snow, ice, ecosystem, and a condensed ecosystem/terrain map on a 10-
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Figure 1-1.  Subsystem 4.1 - 4.3 High-level Data Flow Diagram
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minute equal-angle grid.  The condensed map is built by an off-line process using
information from a coastline map, a surface terrain map, and the ecosystem map.

3. The Meteorological, Ozone, and Aerosol (MOA) (formerly named ASTR) data product
contains meteorological data (surface temperature and surface pressure; 58 atmospheric
levels of temperature, humidity, wind, and height; precipitable water, 26 levels of ozone,
column ozone, and aerosols on a 1.25-degree equal-area grid.)

4. The Release 1 Clear Radiance History (CRH) data product contains albedo, brightness
temperature, and the cosine of the solar zenith angle on a 10-minute equal-angle grid.

The data sets which are input to science algorithms were acquired and/or developed by the Cloud
Working Group.  A Process Control File (PCF) specifying file names and run-time parameters is
prepared by the Distributed Active Archive Center (DAAC) personnel.  PCFs are prepared by the
development team during development for testing purposes and are part of the DAAC delivery
package.

The output products are the pixel-based cloud properties needed by the convolution process (Table
4.4 in ATBD 4.4), a validation product, Status Message Facility (SMF) log files, and Quality
Control (QC) reports.  The hourly output products are described in greater detail in the Data
Products Catalog (Reference 5).

1.3  Key Concepts

This section discusses the major concepts behind the design of the Cloud Retrieval Subsystem.

• Imager pixel
• Data chunk
• Bounding rectangle
• Master pixel
• Chunk loop
• Algorithm loop
• The framework
• Quality edit checks

Imager pixelrefers to a single cloud imager field-of-view, which ranges from 0.25 - 1 km for
MODIS pixels, 2 km for VIRS pixels, and 4 km for AVHRR-GAC (Global Area Coverage)
pixels. Some of the algorithms process one pixel at a time and some of the algorithms process
arrays of pixels at a time.

Data chunk:  The Cloud Retrieval Subsystem processes a chunk of imager data at a time.  A
chunk is a selected number of imager scanlines, which must be at least as large as the largest array
of data any science algorithm needs.
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Bounding rectangle:  After reading the imager data chunk, the diagonal corner latitudes and
longitudes of a rectangle that circumscribes the imager chunk are computed.  These "bounding"
latitude and longitude pairs are used to input a corresponding set of grids from the various input
surface characteristic maps, the gridded MOA data set, and the gridded CRH data set.  These data
form part of a set of attributes that are associated with each imager pixel; each pixel is known as
’master’.

Figure 1-2 shows an arbitrary satellite orbit swath with an illustration of a data chunk and the
bounding rectangle.

Master pixel:  The framework prepares the master pixel by attaching parameters from input data,
from calculated parameters, and from science algorithm results.  The master pixel serves as a
resource from which to select only the attributes a particular science algorithm requires.  The
master pixel consists of imager radiances and reflectances, the surface characteristics, the
geotype, solar angles, clear-sky historical data, various flags, pointers to a set of 3-dimensional
meteorological profiles, and algorithm results.

Figure 1-2.  Chunk and Bounding Rectangle
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Chunk loop:  The Cloud Retrieval Subsystem processes one chunk of imager data at a time.  The
chunk loop continues until there are insufficient data in the imager input hourly file to form the
last chunk.  The leftover scanlines will be processed with additional scanlines from the next
hourly input file in Release 2.

Algorithm loop: Surrounding each science algorithm is an input interface routine that does the
tailoring from the master pixel for the algorithm.  On the output side of each algorithm is another
interface routine that receives the algorithm results and attaches it to the master pixel.  If a
particular algorithm has been selected to execute, an interface is prepared, an algorithm is
executed, and results are stored.  The code loops through all of the science algorithms that are
selected for a particular run.

The framework interfaces with the input data, the algorithms, and the output data.  The framework
accesses and prepares input data for each science algorithm, executes the algorithm, and collects
the results.  The framework initializes the output files and writes results as processing proceeds.
The framework provides the flexibility to add, replace, or delete a particular contributed science
algorithm and to selectively execute it.

Quality edit checks for bad input data are made and fill data are used if the input data within an
imager scanline are unusable.  No fill scanlines are provided when entire scanlines are missing.
Limit checks to ensure that the input data are within reasonable limits are implemented.  Data that
are outside these limits are excluded from further processing, and a diagnostic message is
generated.  Quality checks on science results and within the algorithm, along with science
algorithm error-handling, will be evolving throughout Release 2.

1.4  Implementation Constraints

The implementation constraints are the EOSDIS operating environment, the Science Data
Production  (SDP) Toolkit (Reference 6), the limits of computer CPU, data throughput, network
capacity, and system complexity.  In addition, it is an EOSDIS requirement that all filenames must
be obtained from the Process Control File by using a Toolkit call, and all file opens must be
accomplished by using a Toolkit call.  Currently some of the input data files are managed by the
science algorithms.    Correct file names and open statement usage will be handled on a case-by-
case basis with the algorithm developer.

The cloud framework is written in FORTRAN 90 and interfaces with science algorithms written
in either FORTRAN or C.  The science algorithms are contributed code from members of the
Cloud Working Group.  Therefore, it was necessary to implement the framework around the
contributed code and to consider the contributed code as "black boxes."   The approach was taken
to interface with the science algorithms by preparing tailor-made interfaces to the black boxes.

The Cloud Subsystem needs hourly input files and produces hourly output products for a single
Product Generation Executable (PGE).  It is assumed that the Planning and Data Production
System (PDPS) will not start the cloud processing system until all required input files are available
and that the PDPS will stage all input data files needed for the run.
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Release 1 was delivered to the LaRC Distributed Active Archival Center early March 1996 and
was run within the EOSDIS Interim Release 1 system.  The code is designed to process global data
from the existing ERBE/AVHRR data from the NOAA-9 and 10 spacecraft.

The validation products will be written in Hierarchical Data Format (HDF) early in the Release 2
development.  For Release 1, only common parameters for the hourly products are collected and
output in the form of a header record.  These metadata include general header information such as
instrument, satellite, start data, start time, end data, end time, and processing date and time.
EOSDIS requires that metadata be written using metadata toolkit calls.  The metadata toolkit will
be addressed in Release 2.

1.5  Design Approach

The Cloud Retrieval Subsystem was developed using an object-based design approach.  Isolating
science algorithms from the framework and subsetting the functionality into objects was suited to
the object oriented approach.  FORTRAN 90 module constructs made the object based approach
easy to implement.

The Cloud Retrieval Subsystem is a collaborative effort between the CERES Science Team and
the CERES Data Team members.  Development began with a prototype system following the
requirements from the SRD and from Dr. Bryan Baum.  The idea was to quickly produce a
framework in the C programming language to provide a test bed for the science algorithms, which
were delivered six to nine months later to the Science Team.  The Science Team integrated
algorithms, tailored the interfaces, and checked out the algorithms.

The data team developed the system in three iterative builds, where each build was designed, coded
and tested.  The first build concentrated on inputting all the input data, calculating additional
parameters, building the master pixel for each pixel in the chunk, and outputting the science and
validation products.  Completion of the first build culminated in the Subsystem end-to-end
milestone test.

The second build concentrated on interacting with the Science Team members to flesh out the
details for their algorithm interfaces, and to tailor the science algorithm from a stand-alone mode
to one which would receive its data from the framework.  During the second build, the science
algorithms were integrated into the framework, tested using the master pixel data as the input data
source for the algorithm, and results output to the master pixel and then to the output products.
After completing the first two production builds, extensive difference testing between production
results and prototype results uncovered errors in both versions.  At the end of Build 2 of the
production code, all team members concentrated on the production version, and the prototype was
archived.
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The third build concentrated on preliminary quality control reports and statistics, contributed
routine upgrades, and finalizing the CloudVIS product.  CloudVIS is used specifically as input to
a visualization tool, Satellite Image Visualization (SIVIS).  CloudVis is also input into a subsetting
postprocessor and an IDL visualization program developed for validation.

Prototype development allowed for early science algorithm integration and provided insight into
solving design problems inherent in providing a framework for many different science algorithms
in various languages.  About 50% of the contributed code is in some version of FORTRAN while
the other 50% is in C.  All FORTRAN code was compiled using the
FORTRAN 90 NAG compiler.

Switching to FORTRAN 90 had the advantage of a fresh look at the design after considerable
experience with the prototype.  The FORTRAN 90 compiler has more rigid constraints and,
therefore, found errors that the C and the FORTRAN 77 compilers did not.  The difference testing
revealed errors in the prototype and production versions of the code.
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2.0  Architectural Design

This section discusses two high-level views of the Cloud Retrieval Subsystem.  The dynamic
view is shown in the flowchart inFigure 2-1.  The static view is shown in the context diagram in
Figure 2-2.  The design approach of providing a framework that serves data to the algorithms and
manages algorithm results is shown inFigure 2-1.  Processing proceeds through two major loops.
The outer chunk loop processes pixels in scanlines in a chunk until all chunks in the hour imager
data are processed.  For each chunk, the three steps in the algorithm loop are processed for each
algorithm that has been selected for the particular job.

Execute algorithm

Output chunk of products
CloudVal, CloudVis

CookieDough
CRH updates

Calculate statistics
Output final products

and QC reports

Close and exit

Chunk Loop

Algorithm Loop

Get Chunk and
Prepare master pixel,

-satellite data
-ancillary data

-calculated data

Store results

Prepare algorithm input

Initialize files
1

2

3

4

5

6

7

8

Figure 2-1.  High-level Cloud Retrieval Flow Chart
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The major steps and logic are

1. Initialize the cloud process, get the filenames, open the input files, check all input file
header records, and open the output files.

Steps 2 through 6 are the outer chunk loop.  Process all chunks within the hour.

2. Prepare a "chunk" (multiple scan lines of CID imager data) of master pixels:  Attach the
imager radiances and reflectances, location data, various ancillary input surface conditions,
clear-sky history information, and pointers to the meteorological profiles to each pixel
within the chunk.  The parameters in the pixels, CloudPixel, are listed inAppendix C .

Steps 3 through 5 are the inner algorithm loop: For each algorithm selected:

3. Prepare tailored data structures for the algorithm by extracting the required parameters
from the master pixel.

4. Invoke a science algorithm chosen from the following major catagories

Algorithm
Manager

Input
Data
Sets

Output
Data
Sets

Pixel

Cookie
Dough

Chunk

OutputCloudData

InitCloud

Controller

CID

SURFMAPs

CRH

MOA

Science
Input
Files

CloudVal

CRH

QC
Reports

CloudVis

Figure 2-2.  Design Overview Context Diagram
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a) Classify each pixel as clear, cloudy, or uncertain. The pixel classification process uses
various tests on the imager radiometric data and ancillary data to determine a cloud
mask (ATBD 4.1) (Reference 3).  The Release 1 algorithms are Baum cloud mask
algorithm and the Welch snow/ice, desert, smoke, and cloud mask algorithms.

b) Determine cloud macrophysical properties (cloud layer and cloud top pressure) for
cloudy pixels (ATBD 4.2) (Reference 4).  The Release 1 algorithms are a partial
Coakley Spatial Coherence algorithm and the Baum Classification algorithm.

c) Determine cloud microphysical and optical properties (base and effective radiating
center temperature and pressure, phase, particle size, optical depth at 0.65 micron,
water/ice path, emittance at 10.8 micron) for cloudy pixels (ATBD 4.3) (Reference 5).
The Release 1 algorithms are the Stowe aerosol algorithm, the Minnis VINT algorithm,
and the Platnick algorithm.

5. Collect the algorithm output and store on the master pixel structure.

6. Output the pixel cloud properties, update the clear-sky map, and start the next chunk.  The
parameters in Pixel_Data (refered to as CookieDough), CloudVal, and CloudVis are listed
in Appendix B.

7. At the end of the processing, prepare a processing summary report, shutdown the
algorithms, and

8. Close the files, and terminate processing.

Figure 2-2, the context diagram, shows the major components of the Cloud Retrieval Subsystem.
All of the input data sets are dealt with in the InputDataSets component.  This corresponds to Step
1 discussed below.  The components that deal with the main chunk loop are Chunk, Pixel, and
Algorithm Manager.  Chunk and Pixel together correspond to Step 2 below, and in addition,
provide data to the algorithms.  The Algorithm Manager is an abstraction of individual managers
that prepare algorithm-specific input, call the algorithm, and manage results according to the type
of algorithm invoked.  These are steps 3, 4, and 5.  Similar to the input, OutputDataSets represents
the functions to get pixel data from the chunk and output them to the various products (Step 6) and
the functions to calculate final statistics for the Quality Control (QC) reports (Step 7).  Step 8 closes
all files and shuts down the processing.  Each of the major components are shown in more detail
and discussed in the following sections.
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2.1  Input Data Sets: InitCloud Routine

The InitCloud routine drives the initialization process.  EOSDIS Science Data Production (SDP)
Toolkit calls are made to read the input file names from the Processing Control File (PCF).  If the
files exist, Toolkit calls are made to open the files.  The smaller algorithm support input files are
both opened and the data are read into memory at this time.  If any of the input files could not be
opened or do not exist, an error message is written to the Toolkit Status Message File (SMF), and
processing terminates.  If all input files were successfully opened, the output files selected in the
PCF are opened for writing.  The output file names are also read in from the PCF using Toolkit
routines.

2.2  Chunk: RetrieveChunk Routine

The RetrieveChunk functions centered around processing a chunk’s worth of data and building the
master pixel are illustrated inFigure 2-3.

ChunkRetrieveChunkCID
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Imager Scanline
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5

7
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Determine
NadirLon

2

3

6

ProtoPixel

Figure 2-3.  RetrieveChunk Scenario Diagram
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RetrieveChunk is the framework work horse.  Step 1 reads in a scanline of imager data and
processing loops through the scanline to process each pixel in the scanline.  All relevant imager
data parameters are stored in the data structure, "protopixel" at the end of Step 1. The parameters
in ProtoPixel are listed inAppendix C.

NadirLat and NadirLon are calculated in Steps 2 and 3.

Step 4, BuildPixel, calculates solar angles and gets the parameter values from the protopixel and
attaches them to the master pixel.  Additional detail for BuildPixel is shown inFigure 2-4.  The
first four steps process all pixels in the scanline, and then all scanlines in the chunk.

The bounding rectangle is determined in Step 5, and a chunk’s worth of ancillary data within the
bounding rectangle latitude and longitude boundaries is determined.

Steps 6 and 7  read in the chunk data (SeeFigure 2-5) based on the bounding rectangle
specifications.

Step 8, CompletePixel, attaches parameters from the chunk data onto the master pixel (See
Figure 2-6).   Steps 5 through 8 complete the chunk processing.
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Figure 2-4.  BuildPixel Scenario Diagram



14

In the last step, CompletePixel, the ancillary data and derived quantities are attached to the master
pixel.  The master pixel now contains the parameters any of the science algorithms need along with
fields reserved for the science results.
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Figure 2-5.  RetrieveAncillaryChunk Scenario Diagram
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Figure 2-6.  CompletePixel Scenario Diagram



15

2.3  Algorithm Managers

There are algorithm managers for the mask algorithms, the layer algorithms, and the optical
properties algorithms.   The algorithms are listed inTable 2-1.  The managers read the ancillary
science data that are specific to the particular algorithm.  The manager modules are fairly similar
in structure, and only one manager and one algorithm are discussed and illustrated inFigure 2-7.

Much of the code for the Cloud Retrieval Subsystem was contributed by members of the Cloud
Working Group.  The algorithms are discussed in the ATBDs.  The Cloud Data Management Team
designed and coded the framework and the interface routines to the Toolkit.Table 2-1 lists the
algorithm name, the contributor, the developer, the source language, and the status of the code for
Release 1.   The same information is provided for the framework and Toolkit interface routines.
Since the science algorithms are treated as "black boxes," no attempt has been made to discuss the
design of these algorithms.

Table 2-1.  Contributed Science Code  (1 of 2)

Algorithm Name
Contributor/
Developer

Language Release 1 Status

Cloud mask (CeresMask) Dr. Bryan Baum
Ms. Qing Trepte

C Integrated

Polar, desert, smoke, cloud mask Dr. Ron Welch
Mr. Scott Berendes

C Integrated

Spatial Coherence layer Dr. Jim Coakley Fortran 77 Partial algorithm delivered/
integrated

Cloud Classification Dr. Bryan Baum
Mr. Vasant Tovinkere
Mr. Jay Titlow

C Integrated

CO2 Slicing layer Dr. Bryan Baum
Ms. Qing Trepte

C Algorithm development
underway

VINT Dr. Pat Minnis
Mr. Pat Heck

Fortran 77 Integrated

Aerosol Optical Depth Retrieval Dr. Larry Stowe Fortran 77 Integrated

Platnick (Optical Thickness) Dr. Steve Platnick Fortran 77 Integrated

Air Mass, Meteorological analysis Dr. Bryan Baum
Mr. Jay Titlow

Fortran 77 Integrated

Surface property retrieval Dr. Dave Kratz
Dr. Tom Charlock
Mr. Dave Rutan

Fortran 77 Integrated

CID-AVHRR Dr. Kuo C Integrated
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The Manager checks a flag for each of the possible contributed algorithms.  If the flag indicates
that the algorithm has been selected to run, it calls the corresponding interface routine, as shown
in Step 1 inFigure 2-7.  In Step 2, the interface routine gets a master pixel, CloudPixel, and extracts
only the parameters the particular algorithm needs.  Step 3 calls the science algorithm.  After the
science algorithm completes its processing, the interface routine collects the science results, and
Step 4 puts them on the master pixel.Figure 2-7 shows the MaskManager and the Baum
CloudMask algorithm (CeresMask Interface) as an example of how the managers, the master pixel,
and the algorithm work together.

Input CRH Mr. Pat Heck Fortran 77 Integrated

Update CRH Mr. Pat Heck Fortran 77 Algorithm development
underway

CERESlib Ms. Maria Mitchum
Mr. Joe Stassi

Fortran 90 Interfaces completed

Framework Mr. Tim Murray
Ms. Alice Fan
Ms. Sunny Sun-Mack

Fortran 90 Complete

Toolkit Interface Routines Ms. Alice Fan
Ms. Sunny Sun-Mack

Fortran 90 Complete

Scripts Mr.Tim Murray Unix Complete

ProcessControlFiles/Status
Message Files

Ms. Alice Fan
Ms. Sunny Sun-Mack

Unix, Tool-
kit

Complete

Table 2-1.  Contributed Science Code  (2 of 2)

Algorithm Name
Contributor/
Developer

Language Release 1 Status
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.

2.4  OutputDataSets: OutputCloudData Routine

The scenario diagram which illustrates writing the cloud data and algorithm results to the various
products is shown inFigure 2-8.
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Figure 2-7.  MaskManager Scenario Diagram
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Each of the products shown inFigure 2-8 are only produced if they have been selected prior to run-
time.  These options are set in the Process Control File.

Figure 2-8 shows that Step 1 gets the master pixel in the routine, GetCloudPixel.  Then, depending
on which products have been requested, the particular data structures are formed by extracting the
product-specific output parameters from the master pixel.  The OutputCloudData routine tailors the
output for each of the products, Cookie, CloudVis, and CloudVal.  The updated CRH product
algorithm will be integrated in Release 2.

The "Put.." routines put the pixel data into arrays and the "Write.." routines write the data to the
product file.  The data structures for these three output products are shown inAppendix B.
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Appendix A - Abbreviations and Acronyms

ATBD Algorithm Theoretical Basis Document
AVHRR Advanced Very High Resolution Radiometer
CERES Clouds and the Earth’s Radiant Energy System
CID Cloud Imager Data
CRH Clear Radiance History
DAAC Distributed Active Archive Center
EOS Earth Observing System
EOS-AM EOS Morning Crossing Mission
EOSDIS EOS Data and Information System
EOS-PM EOS Afternoon Crossing Mission
ERBE Earth Radiation Budget Experiment
ERBS Earth Radiation Budget Satellite
GAC Global Area Coverage (AVHRR data mode)
HDF Hierarchical Data Format
LaRC Langley Research Center
MODIS Moderate Resolution Imaging Spectrometer
MOA Meteorological, Ozone, and Aerosol
NASA National Aeronautics and Space Administration
NOAA National Oceanic and Atmospheric Administration
PCF Processing Control File
PDPS Planning and Data Production System
PGE Product Generation Executable
QC Quality Control
SDD Software Design Document
SDP Science Data Production
SIVIS Satellite Image Visualization
SMF Status Message File
SRD Software Requirements Document
SSF Single Satellite CERES Footprint TOA and Surface Fluxes, Clouds
SURFMAP Surface Properties and Map
TOA Top-of-the-Atmosphere
TRMM Tropical Rainfall Measuring Mission
VIRS Visible Infrared Scanner
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Appendix B - External Interface

The data structure, CookiePixel, shows the data elements written to the file CookieDough.
CookiePixel (CookieDough - Table 4.4)
 integer, parameter :: NumLayers = 2
 integer, parameter :: TotNumChan = 11

 TYPE CookiePixel
     REAL                                          :: TimeObs
     REAL                                          :: colatitude
     REAL                                          :: longitude
     REAL                                          :: viewZen
     REAL                                          :: azimuth
     REAL                                          :: rad00_6
     REAL                                          :: rad03_7
     REAL                                          :: rad11_0
     REAL,    DIMENSION ( TotNumChan )             :: bidir

     REAL                                          :: PreciWater
     REAL                                          :: AerOptDepth_Strat
     REAL                                          :: AerOptDepth_Total
     REAL                                          :: EffRadius_Strat
     REAL                                          :: EffRadius_Total
     REAL                                          :: SkinTemp

     REAL,    DIMENSION ( NumLayers )              :: OptDepth_eff
     REAL,    DIMENSION ( NumLayers )              :: emissivity
     REAL,    DIMENSION ( NumLayers )              :: WaterPath
     REAL,    DIMENSION ( NumLayers )              :: TopPressure
     REAL,    DIMENSION ( NumLayers )              :: EffPressure
     REAL,    DIMENSION ( NumLayers )              :: EffTemp
     REAL,    DIMENSION ( NumLayers )              :: EffHeight
     REAL,    DIMENSION ( NumLayers )              :: BotPressure
     REAL,    DIMENSION ( NumLayers )              :: ParticleRadius
     REAL,    DIMENSION ( NumLayers )              :: AspectRatio
     INTEGER, DIMENSION ( NumLayers )           :: ParticlePhase

     INTEGER (int2)                                :: Algorithms
     INTEGER (int2)                                :: elevat
     INTEGER (int2)                                :: solzen
     INTEGER (int1)                                :: DayNightFlag
     INTEGER (int1)                                :: LandType
     INTEGER (int1)                                :: SeaType
     INTEGER (int1)                                :: Airmass
     INTEGER (int1)                                :: Sunglint
     INTEGER (int1)                                :: SnowIce
     INTEGER (int1)                                :: Layers
     INTEGER (int1)                                :: QAFlag
     INTEGER (int1)                                :: RutanEco
     INTEGER (int1), DIMENSION ( NumLayers )       :: CloudFraction
     INTEGER (int1)                                :: Spare_01
     INTEGER (int1)                                :: Spare_02
     INTEGER (int1)                                :: Spare_03
  END TYPE CookiePixel
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The data structure, VisPixel, lists the data elements written to the file CloudVIS.  The structure,
VisHeader, lists the elements written to the header record.  This is 1 header record followed by
multiple VisPixel data records.

The VisHeader Declaration
 TYPE VisHeader
     INTEGER :: NLinesSkipped
     INTEGER :: NPixelPerLine
     INTEGER :: NLines
     INTEGER :: NOutputs
     INTEGER (int1) :: BytesPerPixel
     CHARACTER (LEN=MaxChar), DIMENSION(MaxValues) :: OutputDesc
     INTEGER (int1),          DIMENSION(MaxValues) :: OutType
     REAL,                    DIMENSION(MaxValues, MaxLimits) :: OutLimits
     INTEGER (int1),          DIMENSION(MaxValues) :: NLevels
     CHARACTER (LEN=MaxChar), DIMENSION(MaxValues, MaxLevels) :: OutputLDesc
  END TYPE VisHeader

The VisPixel Declaration
  TYPE VisPixel
     INTEGER (int1)                 :: AVHRRLon_00
     INTEGER (int1)                 :: AVHRRLon_01
     INTEGER (int1)                 :: AVHRRLat_00           ! this is co-lat
     INTEGER (int1)                 :: AVHRRLat_01           ! this is co-lat
     INTEGER (int1)                 :: Chan1Ref
     INTEGER (int1)                 :: Chan3BTM
     INTEGER (int1)                 :: Chan4BTM
     INTEGER (int1)                 :: DayFlag
     INTEGER (int1)                 :: SercaaMask
     INTEGER (int1)                 :: WelchCloudMask
     INTEGER (int1)                 :: WelchDesertMask
     INTEGER (int1)                 :: WelchSnowMask
     INTEGER (int1)                 :: WelchSmokeMask
     INTEGER (int1)                 :: FinalMask
     INTEGER (int1)                 :: ClassifyLayer
     INTEGER (int1)                 :: StoweAOTProperty
     INTEGER (int1)                 :: VintCloudFraction
     INTEGER (int1)                 :: VintEffOpticalDepth
     INTEGER (int1)                 :: VintEmissivity
     INTEGER (int1)                 :: VintWaterPath
     INTEGER (int1)                 :: VintTopPressure
     INTEGER (int1)                 :: VintEffPressure
     INTEGER (int1)                 :: VintEffTemp
     INTEGER (int1)                 :: VintEffHeight
     INTEGER (int1)                 :: VintBottomPressure
     INTEGER (int1)                 :: VintParticalRadius
     INTEGER (int1)                 :: VintParticalPhase
     INTEGER (int1)                 :: PlatnickOptThick
     INTEGER (int1)                 :: PlatnickEffRadii
     INTEGER (int1)                 :: AirMass
     INTEGER (int1)                 :: MOASurfTemp
     INTEGER (int1)                 :: CondensedType
  END TYPE VisPixel
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The data structure, CloudValPixel, lists the data elements written to the file CloudVal.

CloudValPixel Declaration
integer, parameter :: NumLayers       = 2
INTEGER CloudValUnit
CHARACTER (len =200) :: CloudValFile

  TYPE CloudValPixel
     REAL, DIMENSION ( NumChan ) :: rad
     REAL, DIMENSION ( NumChanVIS ) :: reflec
     REAL, DIMENSION ( NumChanIR ) :: BTemp
     REAL :: time
     REAL :: lat
     REAL :: lon
     REAL :: SolZen
     REAL :: azimuth
     REAL :: ViewZen
     REAL :: elevat
     REAL :: CSalbedo
     REAL :: CSbtemp
     INTEGER :: condensed
     INTEGER :: ecosys
     INTEGER :: SercaaMaskRes
     INTEGER :: WelchMaskRes
     INTEGER :: FinalMaskRes
     INTEGER :: ClassifyLayerRes
     INTEGER :: SpaCohLayerRes
     INTEGER :: FinalLayerRes
  END TYPE CloudValPixel
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Appendix C - Data and "Constants"

The protopixel is the structure to hold the imager values in a consistent manner regardless of which
imager is input to the system.  For Release 1, the protopixel reflects the number of channels from
the AVHRR test data set and the VIRS data set.  During Release 2, the number of MODIS channels
required by the Science Team will be reflected in the protopixel and the master pixel.

The “ProtoPixel” declaration
INTEGER, PARAMETER :: NumChan    = 5
INTEGER, PARAMETER :: NumChanVIS = 3
INTEGER, PARAMETER :: NumChanIR  = 3

TYPE ProtoPixelType
     REAL,    DIMENSION ( NumChan ) :: rad
     REAL,    DIMENSION ( NumChanVIS ) :: ref
     REAL,    DIMENSION ( NumChanIR ) :: btm
     INTEGER, DIMENSION ( NumChan ) :: counts
     REAL :: lat
     REAL :: lon
     REAL :: time
     INTEGER :: sat
     INTEGER :: year
     INTEGER :: day
END TYPE ProtoPixelType

The “master” pixel declaration, CloudPixel
TYPE CloudPixel
  INTEGER :: Flag_Count
  INTEGER :: Flag_Rad
  INTEGER :: Flag_Ref
  INTEGER :: Flag_Btm
  INTEGER :: Flag_dummy ! to keep record size the same as Prototype
  INTEGER, DIMENSION(NumChan) :: COUNT
  REAL,    DIMENSION(NumChan) :: Radiance
  REAL,    DIMENSION(NUmChanVis) :: Reflect
  REAL,    DIMENSION(NumChanIR) :: BrightTemp
  REAL :: SolarZen
  REAL :: ViewZen
  REAL :: Azimuth
  REAL :: Elevation
  REAL :: time
  REAL :: Latitude
  REAL :: Longitude
  REAL :: CSalbedo ! Clear sky albedo
  REAL :: CSreflect ! Clear sky reflectance
  REAL :: CSbrightTemp ! Clear sky bright Temperature
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REAL :: SunGlint ! SunGlint Test
  INTEGER :: sat
  INTEGER :: Year ! data year
  INTEGER :: day ! date day of the year
  INTEGER :: Condensed ! Condensed map
  INTEGER :: EcoSys ! Eco system
  INTEGER :: WaterCont ! Water contents
  INTEGER :: ErbSID ! ERBS scene id
  INTEGER :: SnowMap
  INTEGER :: IceMap
  INTEGER :: DayFlag ! Day/night flag
  INTEGER :: PolFlag ! Polar flag
  INTEGER :: MOAIndex
  INTEGER :: SercaaMaskRes ! SERCAA test result
  INTEGER, DIMENSION(WelchValues) :: WelchMaskRes   ! Welch test result
  INTEGER :: FinalMaskRes  ! cloudy = 1, clear = 0
  INTEGER :: ClassifyLayerRes ! Baum classification test result
  INTEGER :: SpaCohLayerRes ! Coakley test result
  INTEGER :: FinalLayer  ! Final cloud layer result
  REAL :: StoweAOTRes ! Stowe
  REAL, DIMENSION(PlatnickValues) :: PlatnickRes ! Platnick test result
  REAL, DIMENSION(VintNumLayers,VintValues) :: VintPropertyRes
  INTEGER (INT1) :: Rutan
END TYPE CloudPixel


